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Abstract: A stereoselective synthesis of a constrained analog of D-lysine is presented. 

A stereoselective synthesis of (2R)-2,6-diaminohex-4-ynoic acid, suitably protected for peptide 

synthesis is presented. This non-natural amino acid derivative can serve as a useful constrained D-lysine 

mimic. It can also potentially be incorporated into a substrate of interest and reduced with tritium to provide a 

radiolabeled D-lysine-containing compound. The corresponding L-lysine mimic was prepared based on the 
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procedures of Sasaki e t  al. or Jansen e t  al.  ~ Briefly, this entails carrying out an enzymatic resolution of 6- 

benzyloxycarbonylamino-2-acetylaminohex-4-ynoic acid (1) using porcine kidney acytase to give (2R)-6- 

benzyloxycarbonylamino-2-acetylaminohex-4-ynoic acid (2) and (2S)-6-benzyloxycarbonylamino-2- 
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aminohex-4-ynoic acid (3). The amino acid 3 precipitates from the reaction mixture and after reaction with di- 

t-butyl pyrocarbonate gives (2S)-6-benzyloxycarbonyl-amino-2-tert-butoxycarbonylaminohex-4-ynoic acid. 

In theory, the N-acylated by-product from the enzymatic resolution can be used to furnish the corresponding 

D-lysine mimic. Unfortunately, our attempts to hydrolyse the acetyl group under acidic conditions (6N HCI, 

reflux) was accompanied by concommitant loss of the 6-Cbz group and varying amounts of HCI addition to 

the alkyne. Attempts to saponify the acetyl group under basic conditions (aqueous KOH in EtOH or aqueous 

NaOH in MeOH) was also accompanied by concommitant loss of the 6-Cbz group. Although it is possible to 

re-acylate the 6-amino group of the diaminoacid via a copper chelate 2, the reported difficulties and low yield of 

product obtained with the enantiomeric compound made this route unattractive to us. "b~ To circumvent these 

problems, a stereoselective synthesis of this non-natural amino acid was examined. 

Deprotonation of the bis-lactim ether 4 with n-BuLi followed by adding the resulting anion to excess 

1,4-dichloro-2-butyne gave the desired propargylic chloride 5 as the major product (66% yield). 3"4 A small 

amount (8%) of the diastereomeric alkylation product was also isolated. The reaction of 5 with NaN 3 in the 

presence of n-Bu4NBr gave the corresponding propargylic azide 6 in excellent yield, n-Bu4NBr was required 

to ensure reproducible high yields of product. 5 The azide was reduced with triphenylphosphine and the 

resulting amine was protected with a Cbz-group to give 7 as shown. 

Hydrolysis of the chiral auxiliary by the action of dilute acid gave the corresponding amine of 8 and 

(S)-valine methyl ester as their hydrochloride salts. Treatment of this mixture with di-t-butyl pyrocarbonate 

under Schotten-Baumann conditions gave the t-butoxycarbonyl protected amines with concomitant hydrolysis 
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of the methyl esters, Flash chromatography on silica gel afforded enantiomerically pure 8 (>97 %ee). 6 This 

material can now be used with standard solution or solid phase peptide synthesis techniques compatible with 

NCL-tert-butyloxycarbonyl protecting groups. 

In conclusion, we have developed an efficient synthesis of a mimic of D-lysine starting from the 

known bis-lactim ether 4. The protected amino acid 8 can serve as a D-lysine mimic having a side-chain 

constrained to an extended conformation. Alternatively, 8 can be substituted for a D-lysine residue in a 

substrate of interest where the alkyne moiety can subsequently be radiolabled. 

Experimental 

General.  tH NMR spectra were recorded with a Bruker AMX400 spectra with chemical shifts reported as 

ppm downfield from internal TMS, with multiplicity, number of protons and coupling constant(s) in Hertz 

indicated parenthetically. Mass spectra were taken on either VG 70 FE, PE Syx API III or VG ZAB HF 

instruments. Flash chromatography was carried out using E. Merck Kieselgel 60, 230-400 mesh silica gel. 

(3R, 6S)-3-(4-Chloro-2-butynyl)-2,5-dimethoxy-6-isopropyl-3,6-dihydropyrazine (5). To the bis-lactim 

ether 4 (0.31 g, 1.70 mmol) in THF (5 mL) at -78 "C was added dropwise n-BuLl (0.75 mL of a 2.5 M solution 

in hexanes, 1.90 mmol). The reaction was stirred at -78 "C for 30 min and then added to a solution of 2,4- 

dichloro-2-butyne (0.67 mL, 6.80 mmol) in THF (5 mL) at -78 °C. After an additional lh at -78 "C, the 

cooling bath was removed and the reaction was stirred for another 17h while warming to RT. The reaction was 

quenched by adding sat. NH4C1 (5 mL). The mixture was poured into H20 (50 mL) and extracted with Et20 

(4 x 50 mL). The combined organic layers were dried over Na2SO4 and concentrated to give a dark yellow 

oil. Flash chromatography (10% Et20/hexane, silica gel) afforded 0.30 g (66%) of the desired product as a 

clear oil. The diastereomer of 5 was also isolated (0.04 g, 8%). 

5: 'H NMR (400 MHz, DMSO-d6) ~ 4.35 (t, J = 2.1 Hz, 2H, CH2-C1 ), 4.19 (t, J = 4.2 Hz, 1H), 4.02 (t, J = 3.4 

Hz, 1H), 3.64 (s, 3H, OCH3), 3.63 (s, 3H, OCH3), 2.70 (m, 2H, CH2-C), 2.21 (m, 1H, (CH3)2CH), 1.01 (d, J = 

6.8 Hz, 3H, (CH3)2CH), 0.62 (d, J = 6.8 nz,  3H, (CI-I3)2CH). MS (ES+) for C,3H,,CIN202 rn/z 271.0 (M+H+). 
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Diastereomer of 5: IH NMR (400 MHz, DMSO-d6) 5 4.29 (m, 2H, CH2-CI), 3.94 (m, 2H), 3.61 (s, 3H, OCH3), 

3.60 (s, 3H, OC__H3), 2.72 (m, 2H, CH2-C), 2.21 (m, 1H, (CH3)2CH), 1.01 (dd, J = 6.8, 21.7 Hz, 3H), 0.68 (dd, J 

= 6.8, 5.9 Hz, 3H). 

(3R, 6S)-3-(4-Azido-2-butynyl)-2,5-dimethoxy-6-isopropyl-3,6-dihydropyrazine (6). Compound 5 (0.26 g, 

0.95 mmol) in anhydrous DMF (4 mL) was added to a flask containing NaN3 (0.33 g, 5.00 retool) and n- 

Bu4NBr (35 mg, 0.10 mmol). The mixture was stirred at RT for 22h, then poured into iN HC1 (50 mL) and 

saturated NaC1 (50 mL). The aqueous phase was extracted with Et20 (3 x 50 mL) and the combined organic 

layers were dried over Na2SO4 and concentrated to give a yellow oil. Flash chromatography (10% 

Et20/hexane, silica gel) afforded 0.23 g (86%) of the desired product as an oil. ~H NMR (400 MHz, DMSO- 

d~) 8 4.20 (m, 1H), 4.01 (m, 3H), 3.65 (s, 3H, OCH3), 3.63 (s, 3H, OCH3), 2.74 (m, 2H, CH2-C ), 2.20 (m, 1H, 

(CH3)2CH), 1.01 (d, J = 6.9 Hz, 3H, (CH3)2CH), 0.62 (d, J = 6.8 Hz, 3H, (CH3)2CH). MS (ES+) for C,3H,9NsO z 

rrdz 278.0 (M+H+). 

(3R, 6S)-3-(4-Benzyl•xycarb•nylamin•-2-butynyl)-2•5-dimeth•xy-6-is•pr•pyl-3•6-dihydr•pyrazine (7). 

To 6 (0.22 g, 0.78 mmol) in THF (5 mL) was added PPh 3 (0.25 g, 0.94 retool) and H20 (50 uL, 2.8 mmol). 

The mixture was stirred at RT for 19h, then concentrated to give a white solid. This material was dissolved in 

dioxane (5 mL) and cooled to 0 "C. A solution of NaHCO 3 (0.21 g, 2.50 mmol) in H20 (2.5 mL) was added, 

followed by benzyl chloroformate (0.36 mL, 2.50 mmol). The reaction mixture was stirred for 4.5h while 

gradually warming to RT. The reaction mixture was diluted with H20 (20 mL) and extracted with CHCI~ (4 x 

25 mL). The combined organic layers were dried over Na2SO 4 and concentrated to yield a yellow oil. Flash 

chromatography (20% EtOAc/hexane, silica gel) afforded 0.24 g (79% yield, 2 steps) of the desired product as 

a clear oil. LH NMR (400 MHz, DMSO-d6) 8 7.61 (m, 1H, NH), 7.35 (m, 5H, Ar-H), 5.03 (s, 2H, ArCH2CO), 

4.15 (m, 1H), 4.05 (m, 1H), 3.69 (m, 2H, CH2NH), 3.65 (s, 3H, OCH3), 3.63 (s, 3H, OCH3), 2.62 (m, 2H, CH 2- 

C:::C), 2.23 (m, 1H, (CH3)2CH), 1.01 (d, J = 6.8 Hz, 3H, (CH3)2CH), 0.62 (d, J = 6.8 Hz, 3H, (CH3)2CH). MS 

(ES+) for C2,H27N304 m/z 386.2 (M+H+). 

(2R)-6-Benzyloxycarbonyl-2-tert-butoxycarbonylaminohex-4-ynoic acid (8). To 7 (0.23 g, 0.60 mmol) in 

dioxane (2.4 mL) was added 1N HCI (2.40 mL, 2.40 mmol). The mixture was stirred for 20h at RT, then 

concentrated to give an oil. This residue was azeotroped to dryness with toluene (5 x 5 mL) and then 

suspended in dioxane (5 mL). 1N NaOH (5 mL) and di-tert-butyl dicarbonate (0.39 g, 1.80 mmol) were added 

and the mixture was stirred at RT for 22h. The reaction was quenched by adding 1N HCI (10 mL) and H20 

(50 mL). The aqueous phase was extracted with CHCI 3 (4 x 50 mL) and the combined organic extracts were 

dried over Na2SO 4 and concentrated to give a pink oil. Flash chromatography (50% EtOAc/hexanes + 1% 
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AcOH, silica gel) afforded 0.19 g (83% yield, 2 steps) of the desired product as a clear oil. [o~] D : - 15.0 (c 

0.3, MeOH). 'H NMR (400 MHz, DMSO-d6) fi 8.32 (s, 1H), 7.65 (broad s, 1H), 7.35 (m, 5H, Ph), 7.05 (d, J = 

7.9 Hz, 1H), 5.01 (s, 2H, PhCH2), 4.05 (m, 1H, a-CH), 3.77 (m, 2H, CH2NH)), 2.55 (m, 2H, CH2C), 1.38 (s, 

9H, BOC). MS (ES+) for C,,H2,N206 m/z 377.2 (M+H+). 
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